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Abstract

We present the design and testing of an algorithm for iterative refinement of the solution
of linear equations, where the residual is computed with extra precision. This algorithm was
originally proposed in the 1950s [22] and analyzed in the 1960s [6, 18] as a means to compute very
accurate solutions to all but the most ill-conditioned linear systems. However two obstacles have
until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was
no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it
was unclear how to compute a reliable error bound for the computed solution. The completion
of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To
overcome the second obstacle, we show how a single application of iterative refinement can be
used to compute an error bound in any norm at small cost, and use this to compute both an
error bound in the usual infinity norm, and a componentwise relative error bound.

We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000.
As long as a normwise (resp. componentwise) condition number computed by the algorithm is
less than 1/max{10,

√
n}εw, the computed normwise (resp. componentwise) error bound is at most

2 max{10,
√

n} · εw, and indeed bounds the true error. Here, n is the matrix dimension and
εw = 2−24 is the roundoff error. Residuals were computed in double precision (53 bits of
precision). In other words, the algorithm can guarantee a tiny error at neglible extra cost for
most linear systems.

For worse conditioned problems, we also get small correct error bounds in over 89% of cases.
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1 Introduction

Iterative refinement is a technique for improving the accuracy of the solution of a system of linear
equations Ax = b. Given some basic solution method (such as Gaussian Elimination with Partial
Pivoting – GEPP), the basic algorithm is as follows:

Input: An n× n matrix A, and an n× 1 vector b
Output: A solution vector x(i) approximating x in Ax = b, and

an error bound ≈ ‖x(i)−x‖∞/‖x‖∞
Solve Ax(1) = b using the basic solution method
i = 1
repeat

Compute residual r(i) = Ax(i) − b
Solve Adx(i+1) = r(i) using the basic solution method
Update x(i+1) = x(i) − dx(i+1)

i = i + 1
until x(i) is “accurate enough”

return x(i) and an error bound
Algorithm 1: Basic iterative refinement

(Note that x(i) is a vector, and we use the notation x
(i)
j to mean the j-th component of x(i).)

This can be thought of as Newton’s method applied to the linear system f(x) = Ax − b. In
the absence of error, Newton’s method should converge immediately on a linear system, but the
presence of rounding error in the inner loop of the algorithm prevents this immediate convergence
and makes the behavior and analysis interesting.

The behavior of the algorithm depends strongly on the accuracy with which the residual r (i)

is computed. We use working precision εw to denote the precision with which all input variables
are stored. The basic solution method is used to solve Ax = b and Adx = r in working precision.
In our numerical experiments, working precision is IEEE754 single precision, i.e. εw = 2−24. This
idea was first proposed by Snyder in 1955 [22]. Analyses of Wilkinson [6] and Moler [18] show that
if the residual is computed to about double the working precision then as long as the condition
number of A is not too large (sufficiently less than 1/εw) the solution x(i) will converge to roughly
working precision. Furthermore, the cost of this high accuracy is negligible: O(n2) on top of the
O(n3) cost of straightforward Gaussian elimination.

The omission so far of this attractive algorithm from standard libraries like LAPACK [1] (or
its predecessor LINPACK [8]) can be attributed to two obstacles: (1) the lack of a portable im-
plementation of higher precision arithmetic to compute the residual, and (2) a way to compute a
truly reliable error bound. The recent completion of the BLAS Technical Forum Standard [5] has
eliminated the first obstacle, and our goal in this paper is to eliminate the second obstacle.

Section 2 summarizes the error analysis of Algorithm 1 above (further details of this and other
sections may be found in [7]). This analysis justifies our stopping criterion and a reliable bound
for the normwise relative error

‖x(i) − x‖∞
‖x‖∞

. (1)

Here and later x = A−1b denotes the exact solution, assuming A is not singular.
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Second, we observe that the entire algorithm is column scaling invariant. More precisely, if we
assume that (1) our basic solution scheme is GEPP without any Strassen-like implementation [24],
(2) that no over/underflow occurs, and (3) C is any diagonal matrix whose diagonal entries are
powers of the floating point radix β (β = 2 in the case of IEEE754 floating point standard arith-
metic [2]), then replacing the matrix A by Ac ≡ AC results in exactly the same roundoff errors
being committed by Algorithm 1: The exact solution xc of the scaled system Acxc = b satisfies

xc = C−1x where Ax = b, and every intermediate floating point approximation x
(i)
c = C−1x(i).

This means that a single application of Algorithm 1 (producing a sequence of approximations

x(i)) can be thought of as implicitly producing the sequence x
(i)
c for the scaled system Acxc = b.

This will mean that at a modest extra cost, we will be able to modify Algorithm 1 to compute the
stopping criterion and error bound for xc for any diagonal scaling C. (The extra cost is O(n) per
iteration, whereas one iteration costs O(n2) if A is a dense matrix.) In other words we will be able
to cheaply compute a bound on the scaled relative error

‖C−1(x(i) − x)‖∞
‖C−1x‖∞

(2)

for any scaling C.
Of the many C one might choose, a natural one would be C ≈ diag(xj), so that each component

xc,j ≈ 1. This means that the scaled relative error (2) measures the componentwise relative error
in the solution. There are two conditions for this to work. First, no component of x can equal
0, since in this case no finite componentwise relative error bound exists (unless the component is
computed exactly). Second, the algorithm must converge (since C, which is computed on-the-fly,
will affect the stopping criterion too).

Section 2 summarizes the precise stopping criterion and error bound for Algorithm 1. One
outcome of this analysis are two condition numbers that predict the success of iterative refinement.
Let n be the matrix dimension and εw be the working precision. Then if the normwise condi-
tion number κnorm(A) < 1/γεw, where γ = max{10,

√
n}, the error analysis predicts convergence

to a small normwise error and error bound. Similarly, if the componentwise condition number
κcomp(A) < 1/γεw, the error analysis predicts convergence to small componentwise error and error
bound. This is borne out by our numerical experiments described below.

Our ultimate algorithm, Algorithm 2, is described in Section 3. Algorithm 2 differs from
Algorithm 1 in several important ways, beyond computing both normwise and componentwise
error bounds. In particular, if consecutive increments dx(i) are not decreasing rapidly enough, the
algorithm switches to representing dx(i) in doubled working precision, i.e. by a pair of working
precision arrays representing (roughly) the leading and trailing bits of dx(i) as though it were
in double precision. Iteration continues subject to the same progress monitoring scheme. This
significantly improves accuracy on the most ill-conditioned problems.

Extensive numerical tests on over two million 100× 100 test matrices are reported in Section 6.
(Similar results were obtained on two million 5 × 5 matrices, two million 10 × 10 matrices, and
2 ·105 1000×1000 matrices.) These test cases include a variety of scalings, condition numbers, and
ratios of maximum to minimum components of the solution.

We summarize the results of these numerical tests. First we consider the normwise error and
error bound. For not-too-ill-conditioned problems, those where κnorm(A) < 1/γεw, Algorithm 2
always computed an error bound of at most 2γεw, which exceeded the true error. Since the
algorithm computes κnorm(A), these cases are easily recognized. For even more ill-conditioned
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problems, with normwise condition numbers κnorm ranging up past ε−2
w , Algorithm 2 still gets

similarly small normwise error bounds and true errors in 96.4% of cases.
Next we consider the componentwise error and error bound. For not-too-ill-conditioned prob-

lems, those where κcomp(A) < 1/γεw, Algorithm 2 always computed an error bound of at most
2γεw, which again exceeded the true error. The number of iterations required was at most 4, with
a median of 2. Since the algorithm computes κcomp(A), these cases are easily recognized. For even
more ill-conditioned problems, with componentwise condition numbers κcomp ranging up past ε−2

w ,
Algorithm 2 still gets similarly small componentwise error bounds and true errors in 94% of cases.

Our use of extended precision is confined to two routines for computing the residual r (i) =
Ax(i) − b, one where all the variables are stored in working precision, and one where x(i) is stored

as a pair of vectors each in working precision: r(i) = Ax(i) + Ax
(i)
t − b. The first operation

r(i) = Ax(i) − b is part of the recently completed new BLAS standard [5], for which portable

implementations exist [15]. The second operation r(i) = Ax(i) + Ax
(i)
t − b was not part of the new

BLAS standard because its importance was not recognized. Nevertheless, it is straightforward to
implement in a portable way using the same techniques as in [15].

The rest of this paper is organized as follows. Section 2 summarizes the error analysis of our
algorithm, including their invariance under column scaling; see [7, Sec. 2] for details. Section 3
describes the ultimate algorithm, Algorithm 2. Section 4 describes related work, Section 5 describes
the testing configuration, including how test matrices are generated. Section 6 presents the results
of numerical tests. Finally Section 7 draws conclusions and describes future work.

2 Error Analysis

Here we summarize an error analysis to justify our choices for termination criteria, error estimates,
and the accuracy with which each step is performed. For details see [7, Sec.2 ]. Let the true forward

error of iteration i be e(i) def
= x(i) − x. Our main contributions are (1) to show that the termination

criteria and error estimates apply not just to ‖e(i)‖∞ but to any diagonally scaled error ‖Ce(i)‖∞,
and (2) to derive easily an estimated condition number (depending on C) that can be used to
identify linear systems when convergence to an accurate solution is “guaranteed” as opposed to
extremely ill-conditioned cases where such convergence is only high likely.

Our describe the three different precisions our algorithm uses εw, εx, and εr. In our experiments,
working precision εw = 2−24 is IEEE754 single precision [2]. Our analysis ignores over/underflow.
The input data A and b are stored in working precision. The factorization of A is done and
results stored using εw. The residual r(i) and step dx(i) are also stored in working precision,
but the solution x(i) is stored and updated to precision εx ≤ εw, where possibly εx ≤ ε2

w if
necessary for componentwise convergence. The criteria for choosing εx is discussed below. Residuals
are calculated to extra precision εr with εr � εw (typically εr ≤ ε2

w). For our single-precision
experiments, the residual is calculated in double precision with εr = 2−53 and additional exponent
range. The computed x(i) is carried either in single (εx = εw = 2−24) or in a doubled single precision
(εx = ε2

w = 2−48).
Using this notation, the computed results r(i), dx(i+1), and x(i+1) from iteration i of Algorithm 1
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satisfy the expressions

r(i) = Ax(i) − b + δr(i) where |δr(i)| ≤ nεr(|A| · |x(i)|+ |b|) + εw|r(i)|; (3)

dx(i+1) = (A + δA(i+1))−1r(i) where |δA(i+1)| ≤ 3nεw|L| · |U |; and (4)

x(i+1) = x(i) − dx(i+1) + δx(i+1) where |δx(i+1)| ≤ εx|x(i+1)|. (5)

Absolute values of matrices and vectors are interpreted elementwise.
Classical analyses in [6, 18] show that if we ignore the errors δr(i) and δx(i+1), then ‖dx(i+1)‖∞

decreases by a factor of at most O(εw)‖A‖∞‖A−1‖∞ at every step. Therefore if κ∞(A) ≡ ‖A‖∞‖A−1‖∞
is sufficiently less than 1/εw, the solution x = x(1)−∑∞

j=2 dx(j) will converge like a geometric sum,

with the norm of the error e(i) =
∑∞

j=i+1 dx(j) also decreasing geometrically.

If we use ρmax = maxj≤i
‖dx(j+1)‖∞
‖dx(j)‖∞

to estimate the rate of convergence, we may use the estimate

‖e(i)‖∞ ≤ ‖dx(i+1)‖∞
(1−ρmax) as the basis of our error bound. This will be reliable as long as convergence is

fast enough, i.e. ρmax does not exceed some ρthresh < 1. Wilkinson chose ρthresh = 1/2, which we
use as well for our “cautious” mode.

Even if we start off with geometric convergence, it will cease when the rounding errors δr (i)

and δx(i+1) become large enough. To detect this we have several basic stopping criteria: Thus
refinement will

Criterion 1: Stop if ‖dx(i+1)‖∞
‖x(i)‖∞

≤ εw, i.e. if dx(i+1) is too small to change the solution x(i) much,
or

Criterion 2: Stop if i.e. if sufficiently fast geometric convergence ceases, or

Criterion 3: Stop if i > ithresh, i.e. if too many iterations have been performed.

Altogether, our normwise error bound is

Bnorm
def
= max

{

‖dx(i+1)‖∞/‖x(i)‖∞

1− ρmax
, γεw

}

≈ ‖x
(i) − x‖∞
‖x‖∞

def
= Enorm (6)

where γ = max(10,
√

n) has been chosen based on our numerical experiments to account for de-
pendence of error on dimension.

Now we discuss diagonal scaling of A. Existing linear equation solvers may already equilibrate,
i.e. replace the input matrix A by As = R · A · C where R and C are diagonal matrices chosen
to try to make κ∞(As) much smaller than κ∞(A). This changes the linear system from Ax = b
to Asxs = bs where xs = C−1x and bs = Rb. If we are careful to choose diagonal entries of R
and C to be powers of the floating point radix β, then no roundoff is introduced. The choice of
R has no effect on the way we measure error (it effect the pivot choices during factorization), but
the choice of C does. We account for this as follows: Iterative refinement on the system Asxs = rs

produces a sequence of corrections dx
(i+1)
s and approximate solutions x

(i+1)
s As long as C’s entries

are powers of β and we use conventional implementations of LU decomposition (eg not Strassen’s

method), then Cdx
(i+1)
s = dx(i+1) and Cx

(i+1)
s = x(i+1) exactly, including all rounding errors (but

ignoring over/underflow). Therefore we can apply our error bound and stopping criteria above to
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the quantities Cdx
(i+1)
s and Cx

(i+1)
s . This amounts to O(n) work to diagonally scale before norms

are computed, and is very cheap. The corresponding condition number governing convergence is

κnorm = κ∞(As · C−1) = κ∞(R · A). (7)

which is easy to estimate using standard condition estimation techniques [9, 10, 11].
Now note that in the last paragraph the matrix C could have contained arbitrary powers of

β (modulo over/underflow), not just those from equilibration. Thus if we were able to choose Ĉ

so that each component of |Ĉx
(i+1)
s | were approximately 1, the normwise relative error in Cx

(i+1)
s

(measure using the infinity norm) is the same as the componentwise relative error. Thus all our
error bounds, stopping criteria and condition numbers above apply.

Of course we do not how to choose Ĉ until we know the solution, at least approximately. So in
the final algorithm, discussed in the next section, we monitor the convergence of each component

of x
(i+1)
s , and as soon as each component has “settled down” to at least 2 bits (i.e. a relative error

of .25), we round it to the nearest power of β in order to determine the corresponding diagonal
entry of Ĉ. This leads to the componentwise error bound

Bcomp
def
= max

{

‖Ĉdx()(i + 1)s‖∞
1− ˆρmax

, γεw

}

≈ max
k

∣

∣

∣

∣

∣

x
(i)
k − xk

xk

∣

∣

∣

∣

∣

def
= Ecomp (8)

and componentwise condition number

κcomp = κ∞(As · Ĉ−1) ≈ κ∞(As · diag(xs)) = κ∞(R · A · diag(x)). (9)

We note that the same technique may be applied to LAPACK’s current single precision refine-
ment algorithm in SGERFS. Scaling by x(i) in LAPACK’s forward error estimator produces the
loose componentwise error estimate Bcomp ≈ ‖Ĉ−1 · |A−1| · (|r|+ (n + 1)εw(|A||xs|+ |b|)) ‖∞.

3 Algorithmic Details

Using the error estimates and termination criteria established above, we now describe our ultimate
iterative refinement procedure, Algorithm 2. Its cost amounts to a bounded number of triangular
solves, on top of Gaussian elimination. In other words, for a dense matrix, the cost is O(n2) on top
of the O(n3) required for the solution without refinement.

The algorithm refers to auxiliary vectors y ≡ xs, dy ≡ dxs, z ≡ Ĉxs and dz ≡ Ĉdxs. but the
implementation stores y in place of x and dy in places of dx to minimize storage; neither z nor dz
are stored explicitly. All norms in this section are the infinity norm.

Algorithm 2 tracks the convergence state of x and z in the variables x-state ∈ {working,
no-progress, converged} and z-state ∈ {unstable, working, no-progress, converged}, respectively. State
variable y-scheme ∈ {single, double} denotes the precision used for storing and computing with y.
The refinement loop exits either from a large iteration count or when both x and z are no longer
in a working state (see line 18).

The logic is somewhat complicated by three facts. First, we are simultaneously applying two
sets of stopping criteria, one for the normwise error and one for componentwise error, so the code
must decide what to do when one set of criteria decide to stop (either because of convergence or
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failure to converge) before the other set of criteria; basically we continue if are continuing to make
progress by either set of criteria.

Second, the code must decide when store the solution y in doubled working precision εx ≤ ε2
w;

this costs more than keeping y in working precision, and so is only used when either progress
toward a solution stops (Criterion 2) before convergence (Criterion 1) (in either the normwise or
componentwise sense), or when a cheap upper bound on κcomp is very large (line 14). To store y
in doubled working precision a second vector yt is used to store the “tails” of each floating point
component. In otherwords, the solution is represented as y + yt where |yt| � |y|.

Third, we must decide when each component of the solution has “settled down” enough to
test for componentwise relative convergence: Our criterion is that no component’s relative change
exceeds a threshold dzthresh, currently set to .25.

There are a number of slightly different ways to implement all the above tests. As described
in [7], we tried a variety of formulations, because in our 6.2 million tests there were noticeable
statistical differences in the number of “outliers”, where the error was larger than desired. We
chose the formulation that minimized these outliers.

We must also take precautions to return reasonable error bounds when some solution compo-
nents are exactly zero because of the sparsity structure of A and b. For example, if b = 0 then
x = 0 should be returned with a zero error bound. Similarly, if A is block diagonal and b has zero
components then some components of x will be exactly zero. See [7, Sec. 7.3] for further discussion.

Input: Current z-state, ‖dz(i)‖, ‖dz(i−1)‖, y-scheme

Output: New z-state and ρmax,z, possibly signaling incr-prec or updating final-relnormz

if z-state = unstable and ‖dz(i+1)‖ ≤ dzthresh then z-state = working

if z-state = no-progress and ‖dz(i+1)‖/‖dz(i)‖ ≤ ρthresh then z-state = working

if z-state = working then

if ‖dz(i+1)‖ ≤ εw then z-state = converged // Criterion 1, tiny dz

5 else if ‖dz(i+1)‖ > dzthresh then
z-state = unstable, final-relnormz =∞, ρmax,z = 0.0

else if ‖dz(i+1)‖/‖dz(i)‖ > ρthresh then
if y-scheme = single then incr-prec = true

else z-state = no-progress // Criterion 2, lack of progress

else ρmax,z = max{ρmax,z, ‖dz(i+1)‖/‖dz(i)‖}
if z-state 6= working then final-relnormz = ‖dz(i+1)‖

Procedure new-z-state

4 Related Work

Extra precise iterative refinement was proposed in the 1950s [22] and analyzed in the 1960s. In [6],
Wilkinson et al. presents the Algol programs that perform the LU factorization, the triangular
solutions, and the iterative refinement using εr = ε2

w. Wilkinson used the Crout algorithm for LU
factorization, in which the inner products are performed in extra precision, but in our numerical
experiment we use the same implementation of Gaussian elimination from LAPACKas Algorithm 2.

Wilkinson’s algorithm differs from ours in several ways: (1) There is no initial equilibration in
Wilkinson’s algorithm. (2) ρthresh is fixed to 0.5 in Wilkinson’s algorithm. (3) Wilkinson’s algorithm
does not store x to additional precision. (4) Wilkinson’s algorithm does not attempt to achieve
componentwise accuracy. (5) The original paper’s algorithm [6] does not return an error bound,
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Input: An n× n matrix A, an n× 1 vector b
Output: A solution vector x(i) approximating x in Ax = b,

a normwise error bound ≈ ‖x(i) − x‖/‖x‖, and

a componentwise error bound ≈ maxk |x(i)
k − xk |/|xk|

Equilibrate the system: As = R ·A · C, bs = R · b
Estimate κs = κ∞(As)
Solve Asy

(1) = bs using the basic solution method
4 ‖dx(1)‖ = ‖dz(1)‖ = final-relnormx = final-relnormz =∞

ρmax,x = ρmax,z = 0.0, x-state = working, z-state = unstable, y-scheme = single

6 for i = 1 to ithresh do
// Compute residual in precision εr

if y-scheme = single then r(i) = Asy
(i) − bs

else r(i) = As(y(i) + y
(i)
t )− bs, using doubled arithmetic

// Compute correction to y(i)

Solve As dy(i+1) = r(i) using the basic solution method
// Check error-related stopping criteria

Compute ‖x(i)‖ = ‖Cy(i)‖, ‖dx(i+1)‖ = ‖Cdy(i+1)‖ and ‖dz(i+1)‖ = maxj

∣

∣

∣

dy
(i+1)
j /y

(i)
j

∣

∣

∣

14 if y-scheme = single and κs · maxj |yj |/minj |yj | ≥ 1/γεw then incr-prec = true

15 Update x-state, ρmax,x with Procedure new-x-state below
16 Update z-state, ρmax,z with Procedure new-z-state below

// Either update may signal incr-prec or may set its final-relnorm .
18 if x-state 6= working and z-state 6= working then BREAK

19 if incr-prec then y-scheme = double, incr-prec = false, and y
(i)
t = 0

// Update solution

if y-scheme = single then y(i+1) = y(i) − dy(i+1)

else (y(i+1) + y
(i+1)
t ) = (y(i) + y

(i)
t )− dy(i+1) in doubled arithmetic

23 if x-state = working then final-relnormx = ‖dx(i+1)‖/‖x(i)‖
24 if z-state = working then final-relnormz = ‖dz(i+1)‖

return x(i) = Cy(i),

normwise error bound max
{

1
1−ρmax,x

· final-relnormx, max{10,
√

n} · εw

}

, and

componentwise error bound max
{

1
1−ρmax,z

· final-relnormz, max{10,
√

n} · εw

}

Algorithm 2: New iterative refinement

Input: Current x-state, ‖x(i)‖, ‖dx(i)‖, ‖dx(i−1)‖, y-scheme

Output: New x-state and ρmax,x, possibly signaling incr-prec or updating final-relnormx

if x-state = no-progress and ‖dx(i+1)‖/‖dx(i)‖ ≤ ρthresh then x-state = working

if x-state = working then
if ‖dx(i+1)‖/‖x(i)‖ ≤ εw then x-state = converged // Criterion 1, tiny dx

else if ‖dx(i+1)‖/‖dx(i)‖ > ρthresh then
if y-scheme = single then incr-prec = true

else x-state = no-progress // Criterion 2, lack of progress

else ρmax,x = max{ρmax,x, ‖dx(i+1)‖/‖dx(i)‖}
if x-state 6= working then final-relnormx = ‖dx(i+1)‖/‖x(i)‖

Procedure new-x-state
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though an error analysis appears in [26] and [18]. In particular, [18, Eq. (11)] and [12, Thm.
12.1] provide error bounds including several functions of problem dimension, condition number,
and other quantities that are hard to estimate tightl and efficiently. For the sake of later numerical
comparisons, we add normwise error bounds and stopping criteria to Wilkinson’s algorithm based
on our error analysis in Section 2, and call the resulting algorithm Algorithm W.

The use of higher precision in computing x was first presented as an exercise in Stewart’s
book [23, p. 206-207]. Stewart suggests that if x is accumulated in higher and higher precision,
then the residual will get progressively smaller and the iteration will eventually converge to any
desired accuracy. Kie lbasiński proposes an algorithm called binary cascade iterative refinement [14].
In this algorithm, GEPP and the first triangular solve for x(0) are performed in a base precision.
Then during iterative refinement, r(i), x(i+1) and dx(i) are computed in successively higher precision.
Kie lbasiński’s shows that with a prescribed accuracy for x, you can choose a maximum precision
required to stop the iteration. This requires arbitrary precision arithmetic. We are not aware of
any implementation of this algorithm.

A different approach to guaranteeing accuracy of a solution is to use interval arithmetic [20, 21].
We will not consider interval algorithms further, since the available algorithms do not meet our
criterion of costing a small amount extra on top of the fastest available solution method.

Björck [3] nicely surveys the iterative refinement for linear systems and least-squares prob-
lems, including error estimates using working precision or extra precision in residual computation.
Higham’s book [12] gives a detailed summary of various iterative refinement schemes which have
appeared through history. Higham also provides estimates of the limiting normwise and comp-
onentwise error. The estimates are not intended for computation but rather to provide intuition on
iterative refinement’s behavior. The estimates involve quantities like ‖|A−1| · |A| · |x|‖∞ and require
estimating the norm of A−1. We experimented with approximating these error estimates without
using refinement within the norm estimator (which requires the solution of linear systems with A
and AT ), but they provided very inaccurate normwise and componentwise bounds.

Until now, extra precise iterative refinement was not adopted in standard libraries, such as
LINPACK [8] and later LAPACK [1], mainly because there was no portable way to implement extra
precision when the working precision was already the highest precision supported by the compiler.
Therefore, the current LAPACK expert driver routines xGESVX only provide the working precision
iterative refinement routines (εr = εw). Since iterative refinement can always ensure backward
stability, even in working precision [12, Theorem 12.3], the LAPACK refinement routines use the
componentwise backward error in the stopping criteria. For the sake of later numerical comparisons,
we augment this algorithm as described in Section 2 to compute a componentwise error bound, and
call the resulting algorithm Algorithm L.

5 Testing Configuration

5.1 Hardware and Software Platforms.

The XBLAS library [15] is a set of routines for dense and banded BLAS routines, along with their
extended and mixed precision versions; see Chapters 2 and 4 of the BLAS Technical Forum Standard
[5]. Many routines in the XBLAS library allow higher internal precision to be used, enabling us
to compute more accurate residuals. For example, general matrix-vector multiply BLAS_sgemv_x

performs y ← αAx + βy in single, double, indigenous, or extra precision.
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In addition to the extra precision routines provided by the XBLAS, the doubled-x scheme in
Algorithm 2 requires a new routine which we call gemv2. This routine takes a matrix A, three
vectors x, y, and z, and three scalars α, β, and γ to compute z ← αAx + βAy + γz where the right
hand side is evaluated with precision εr. This routine enables us to compute an accurate residual
when x is kept in two words, xleading and xtrailing: r = b−A(xleading + xtrailing).

We tested the code on two platforms: Sun UltraSPARCs running Solaris and Itanium 2 running
Linux. The results were largely similar, so we present results only from Itanium. For more details
regarding compilers and BLAS libraries used, see [7, Sec. 5.5].

5.2 Test Matrix Generation

To thoroughly test our algorithms, we need many test cases with a wide range of condition numbers,
various distribution of singular values, well-scaled and ill-scaled matrices, matrices with first k
columns nearly linearly dependent (so that ill-conditioning causes the k-th pivot to be tiny), and a
wide range of solution component sizes. We generate test cases as follows:

1. Randomly pick a condition number κ with log2 κ distributed uniformly in [0, 26]. This will
be the (2-norm) condition number of the matrix before any scaling is applied.

2. We pick a set of singular values σi’s from one of the following choices:

(a) One large singular value: σ1 = 1, σ2 = · · · = σn = κ−1.

(b) One small singular value: σ1 = σ2 = · · · = σn−1 = 1, σn = κ−1.

(c) Geometrical distribution: σi = κ− i−1
n−1 for i = 1, 2, . . . , n.

(d) Arithmetic distribution: σi = 1− i−1
n−1(1− κ−1) for i = 1, 2, . . . , n.

3. Pick k randomly from {3, n/2, n}. Move the largest and the smallest singular values (picked
in step 1) into the first k values, and let Σ be the resulting diagonal matrix. let

Ã = UΣ

(

V1

V2

)

(10)

where U , V1, and V2 are random orthogonal matrix with dimensions n, k, and n − k, re-
spectively. If κ is large, this makes the leading k columns of Ã nearly dependent, so that
LU factorization will encounter a small pivot at the k-th step. U , V1 and V2 are applied via
sequences of random reflections of dimensions 2 through n, k or n− k, resp.

4. Pick τ with (log2 τ)1/2 uniformly distributed in [0,
√

24]. We generate x̃ so that τ = maxi |x̃i|
mini |x̃i|

.
by randomly choosing one of the following distributions:

(a) One large component: x̃1 = 1, x̃2 = · · · = x̃n = τ−1.

(b) One small component: x̃1 = x̃2 = · · · = x̃n−1 = 1, x̃n = τ−1.

(c) Geometrical distribution: x̃i = τ− i−1
n−1 for i = 1, 2, . . . , n.

(d) Arithmetic distribution: x̃i = 1− i−1
n−1(1− τ−1) for i = 1, 2, . . . , n.

(e) x̃i’s are randomly chosen within [τ−1, 1] so that log x̃i is uniformly distributed.

10



If one of the first four distributions is chosen, we multiply x̃ by a uniform random number
in [0.5, 1.5] to make the largest element unequal to 1 (so that all components of x̃ have full
significand).

5. We then randomly column scale the matrix Ã generated in step 3. We pick a scaling factor
δ such that (− log2 δ)1/2 is uniformly distributed in [0,

√
24].∗ Select two columns of Ã at

random and multiply by δ to produce the final input matrix A (rounded to single).

6. We compute b = Ax̃ using double-double precision (using the XBLAS routine BLAS_sgemm_x),
but rounded to single at the end.

7. Compute x = A−1b by using double precision GEPP with double-double precision iterative
refinement. This corresponds to Algorithm 2 with IEEE754 double precision as working
precision (εw = 2−53) and double-double as residual precision (εr ≈ 2−105). Note that the
“true” solution x thus obtained is usually not the same as x̃ that we started, due to rounding
errors committed in step 6. This difference can be quite large if A is ill-conditioned.

Using the above procedure, 2×106 5×5, 2×106 10×10, 2×106 100×100, 2×105 1000×1000
test matrices were generated. Statistics for the 100 × 100 matrices are presented next. Similar
results were obtained for the other dimensions.

5.3 Test Matrix Statistics

We histogrammed 6 different condition numbers of the test matrices to make sure that we had a
good (if not entirely uniform) sampling of hard through easy problems. The histograms may be
seen in [7, Fig. 1]. These condition numbers are as follows.

1. κs = κ∞(RAC) = κ∞(As) is the condition number of the equilibrated system. This is a
measure of the inherent difficulty of the system (measured in an appropriate norm). This
condition number varies from about from about 57 to 1.6 × 1013, with all but 2169 (0.11%)
smaller than 1010.

2. κc = κ∞(C) = ‖C‖∞ is the maximum column scaling factor computed during equilibration.
This varies from 1 to 235 ≈ 3.4 × 1010. Since the equilibration is only done if ‖C‖ would be
greater than 10, C = I happens relatively often.

3. κx = κ∞(diag(x)) = maxi |xi|/mini |xi| is the ratio between the largest and smallest element (in
magnitude) of x. This is a measure of how wildly the components of x varies. κx varies from
1 to about 6.8 × 1013, with all but 750 (0.04%) of them less than 1010.

4. κy = κ∞(diag(y)) = maxi |yi|/mini |yi| is the ratio between the largest and smallest element (in
magnitude) of y. This varies from 1 to approximately 8.5×1012, with all but 1266 (0.06%) less
than 1010. This is a measure of how wildly the components of y varies, which gives some idea
of the difficulty of getting componentwise accurate solution. The term κy appears naturally
in the condition number for componentwise problem, since κcomp = κ∞(As diag(y)) ≤ κsκy.

∗As in step 4, we chose this distribution as to not overload our test samples with “hard” problems (in normwise
sense) with large κ(RA) = κ(AsC

−1).
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5. κnorm = κ∞(As · C−1) = κ∞(R · A) is the normwise condition number. It varies from about
57 to 7.6× 1017. Using κnorm we divide the test matrices into two categories:

• Normwise “well”-conditioned problems. These are matrices with κnorm ≤ 1/γεw,
and perhaps more accurately described as “not too ill-conditioned” matrices. These are
matrices where we hope to have an accurate solution after refinement in the normwise
sense. Most problems can be expected to fall in this category in practice. Of the two
million test matrices, 821097 cases fall into this category.

• Normwise ill-conditioned problems. These are the matrices with κnorm > 1/γεw.
These are so ill-conditioned that we cannot guarantee accurate solutions. Of the two
million test matrices, 1178903 cases are in this category.

Note that the choice of 1/γεw (which is approximately 1.67×106 for 100×100 matrices) as the
separation between well and ill-conditioned matrices is somewhat arbitrary; we could have
chosen a more conservative criteria such as 1/nεw or more aggressive criteria such as 1/εw.
Our data in Section 6 indicate that the choice 1/γεw seems to give reliable solutions without
throwing away too many convergent cases. γ = max{10,

√
n} both protects against condition

number underestimates and keeps the bounds attainable.

6. κcomp = κ(RA diag(x)) = κ(As diag(y)) is the condition number for componentwise problem.
It varies from about 57 to 4.5× 1015. Note that κcomp depends not only on the matrix A, but
also on the right hand side vector b (since it depends on the solution x). As before, we use
κcomp to divide the problems into two categories:

• Componentwise “well”-conditioned problems. These are problems with κcomp ≤
1/γεw, and perhaps more accurately described as “not too ill-conditioned” problems.
These are problems where we hope to have an accurate solution in componentwise sense.
Of the two million test problems, 545427 cases fall into this category.

• Componentwise ill-conditioned problems. These are the matrices with κcomp >
1/γεw. These are so ill-conditioned that we cannot guarantee accurate solutions. Of
the two million test problems, 1454573 cases fall into this category. Note that if any
component of the solution is zero, then κcomp becomes infinite.

We also histogrammed κs versus κc and κs versus κy (see [7, Fig. 2]) in order to confirm that
we sampled the test matrix space thoroughly.

For the basic solution method, we used LAPACK’s sgetrf (GEPP, PAs = LU) and sgetrs (tri-
angular solve) routines. We observed that the pivot growth factors maxi,j |U(i, j)|/ maxi,j |As(i, j)|
are no more than 72. This implies that we have obtained LU factors with small normwise backward
error. We histogrammed the pivot growth factors (see [7, Fig. 3]), which showed a smooth decrease
in likelihood with increasing pivot growth. This is consistent with [25], which suggests that for
various random matrix distributions, the average pivot growth factor should be about n2/3 ≈ 22.

5.4 Accuracy of Single Precision Condition Numbers

All the condition numbers in section 5.3 were computed in double precision, which can be re-
garded as truth. Since the Algorithm 2 will only estimate the condition number in working (single)
precision, we must confirm that single precision result is accurate for condition numbers up to 1/γεw.
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Figure 1: Accuracy of computed condition numbers: single precision vs. double precision. The single
precision κcomp are those computed by Algorithm 2 with ρthresh = 0.5.

The 2D histograms of the normwise condition number κnorm computed in single precision and
double precision, is shown in figure 1(a). Since 2D histograms appear throughout this paper, we
explain this plot in detail. In this 2D histogram, each colored square at coordinate (x, y) indicates
the existence of matrices that have single precision κnorm in the range [10x, 10x + 1/4) and double
precision κnorm in the range [10y, 10y + 1/4). The color of each square indicates the number of
matrices that fall in that square, indicated by the color bar to the right of the plot. Red (dark)
colored squares indicate large population while cyan (light) colored squares indicate very small
population. A logarithmic scale is used in the color bar, so a lighter color indicates a much smaller
population than a darker color. For example, the light cyan colored squares near the top and right
edges contains only a handful of matrices (less than 5, usually just 1), while the darker red colored
squares contains approximately 103 to 104 samples.

The blue horizontal and vertical lines are both located at 1/γεw, separating “well”-conditioned”
and ill-conditioned matrices. Along with the diagonal line where both single and double precision
values of κnorm are equal, these lines divide the plot into six regions, and the percentage of samples
in each region is displayed in bold numbers in the plot.

If the single and double precision values of κnorm were identical, the only colored squares would
be along the diagonal. When κnorm ≤ 1/γεw, the squares are all close to the diagonal, meaning that
the single precision κnorm is close to the double precision κnorm (which we assume is the true value).
Only when either condition number exceeds 1/γεw can they differ significantly, as indicated by the
spread of colored squares in the upper right. This tells us that we can trust the single precision
κnorm to separate the not-too-ill-conditioned matrices from the very ill-conditioned matrices.

Figure 1(b) tells the same story for the componentwise condition number κcomp.
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6 Numerical Results

We present the numerical results for our new algorithm, Algorithm 2, and compare it to Algo-
rithms W (Wilkinson) and L (the current LAPACKalgorith, with our small modifications). The
data is for two million 100×100 test matrices described in Section 5. Similar results were obtained
on two million each of 5 × 5 and 10 × 10 matrices and also two hundred thousand 1000 × 1000
matrices∗.

The normwise and componentwise true errors are denoted Enorm = ‖x−x̂‖∞/‖x‖∞ and Ecomp =
maxi |xi−x̂i|/|xi|, respectively. where x is the true solution and x̂ is the solution computed by the
algorithm. Similarly, the normwise and componentwise error bounds (computed by the algorithms)
are denoted Bnorm and Bcomp, respectively.

Sections 6.1 and 6.2 present normwise and componentwise results, resp. We set ρthresh = 0.5 in
Algorithms 2 and W. Parameter ithresh (maximum number of iterations allowed) is set very large
so that we can evaluate the number of steps required to converge.

We define notation common to Sections 6.1 and 6.2. For example, for Enorm we distinguish
three cases:

1. Strong Convergence: Enorm ≤ 2γεw = 2 max{10,
√

n} · εw. This is the most desirable case,
where the true error is of order εw. The lower solid horizontal blue line in Figure 2 (and in
other analogous figures) is at Enorm = 2γεw.

2. Weak Convergence: 2γεw < Enorm ≤
√

εw. We could not get strong convergence, but we
did get at least half of the digits correctly. The upper solid horizontal blue line in Figure 2
(and in other analogous figures) is at Enorm =

√
εw.

3. No Convergence: Enorm >
√

εw. We could not get a meaningful result.

In addition, we often indicate the value of εw in figures as well. For example the dashed horizontal
blue line in Figure 2 (and in other analogous figures) is at Enorm = εw.

Many other analogous figures have two solid horizontal and one dashed horizontal line to indicate
similar thresholds betreen these cases for Bnorm, Ecomp, and Bcomp.

In the final version of the code we set the error bound to 1 whenever its computed value
exceeds

√
εw, in order to indicate that it did not converge according to our criterion above. But

in this section we report the computed error bounds without setting them to 1, in order to better
understand their behavior.

Later in Section 6.4 we will vary the parameters ρthresh and ithresh to study how the behavior
of Algorithm 2 changes. In particular, we will recommend “cautious” and “aggressive” values of
ithresh and ρthresh. The cautious settings, which we recommend as the default, yield maximally
reliable error bounds for “well”-conditioned problems, and cause the code to report convergence
failure on the hardest problems. The aggressive settings will lead to more iterations on the hardest
problems and usually, but not always, give error bounds within a factor of 100 of the true error.

∗A full set of plots for all algorithms and all 6.2M test matrices is at http://www.cs.berkeley.edu/~demmel/

itref-data/.
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Figure 2: Normwise error vs. κnorm. Left: Algorithm 2 with ρthresh = 0.5. Right: Algorithm L.

6.1 Normwise Error Estimate

The most important observation is that both Algorithm 2 and Algorithm W deliver a tiny error
(Enorm strongly converged) and a slightly larger error bound (Bnorm also strongly converged) as
long as κnorm ≤ 1/γεw, i.e. for all “well”-conditioned matrices in our test set (821097 out of 2
million). This is the best possible behaviour we could expect.

The second important observation is that for ill-conditioned problems (κnorm > 1/γεw), both
algorithms still do very well, with Algorithm 2 getting strong convergence in both Enorm and Bnorm

in 96.4% of the cases, and Algorithm W getting strong convergence in both Enorm and Bnorm in
92.3% of the cases.

In the rest of this section, we explore the experimental data in more detail, describing what
goes wrong when we fail to get strong convergence.

The two plots in Figure 2 show the 2D histograms of the test problems plotted according to
their true normwise error Enorm and condition number κnorm for Algorithms 2 and L. The plot for
Algorithm W is nearly identical to the plot for Algorithm 2 and so is omitted (see [7, Fig. 6b]).
The vertical solid line is at κnorm = 1/γεw, and separates the “well”-conditioned problems from the
ill-conditioned problems. The solid horizontal lines are at

√
εw and 2γεw, separating the regions of

strong and weak convergence of Enorm. The dotted horizontal line is at εw, far below which errors
are unlikely to fall. If any problem falls outside the coordinate range, then it is placed at the edge;
for example the band at the very top of Figure 2 includes all the cases where Enorm ≥ 10.

The first important conclusion to draw from the left figure in Figure 2 is that for “well”-
conditioned problems (κnorm < 1/γεw), Algorithm 2 (and Algorithm W) attain the best possible
result: strong convergence of Enorm in all cases (821097 out of 2 million).

The second important conclusion is that for harder problems, with κnorm ≥ 1/γεw (1178903 cases)
Algorithm 2 (and Algorithm W) still do very well, with Algorithm 2 exhibiting strong convergence of
Enorm in 96.4% of cases (1136987 out of 1178903), and Algorithm W exhibiting strong convergence
of Enorm in 93.3% of cases (1100328 out of 1178903).

In contrast, with Algorithm L (the right figure in Figure 2), the error grows roughly proportional
to the condition number, as shown by the dark diagonal squares in the figure. This is consistent
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Figure 3: Normwise error vs. bound (all two million cases) Left: Algorithm 2. Right: Algorithm W.

with the early error analysis on the working precision iterative refinement [12, Theorem 12.2].
Algorithm L consistently gives much larger true errors and error bounds than either of the other
two algorithms, when it converges.

But of course a small error Enorm is not helpful if the algorithm cannot recognize it by computing
a small error bound Bnorm. We now compare Bnorm to Enorm to see how well our error estimate
approximates the true error. Figure 3 shows the value of (Enorm, Bnorm) as a 2D histogram, for
Algorithms 2 and W. The leftmost vertical solid blue lines are at Enorm = 2γεw (corresponding to
the threshold for strong convergence) and the rightmost vertical solid blue lines are at Enorm =

√
εw

(corresponding to the threshold for weak convergence). Horizontal blue lines are at Bnorm equal
to the same values. The diagonal line marks where Bnorm is equal to Enorm; matrices below
the diagonal correspond to underestimates (Bnorm < Enorm), and matrices above the diagonal
correspond to overestimates (Bnorm > Enorm). The vertical and horizontal dotted lines correspond
to Enorm = εw and Bnorm = εw, respectively.

For the 821097 “well”-conditioned problems, both Algorithms 2 and W converged to a true
error of at most about 3 · 10−7, and returned an error bound of γεw ≈ 6 · 10−7, just slightly larger.
All these cases appear at the left of the dark band at the bottom left of the histogram, within
the region of strong convergence for both error bound and true error. The dark red squares at
the bottom of the histograms indicate that the vast majority of these cases returned an true error
around εw. Thus we can trust either algorithm to deliver a tiny error and a slightly larger error
bound as long as κnorm < 1/γεw.

By subtracting out the 821097 “well”-conditioned cases from the over 1.9M in the lower left
corner of the plots in Figure 3, we get the distribution of results (Enorm, Bnorm) for all ill-conditioned
cases. Most still yield strong convergence in both quantities, but it is interesting to contrast the
behavior of Algorithms 2 and W.

The first impression from these plots is that among these ill-conditioned cases, both Algorithms 2
and W fail to have Bnorm converge in about same number of cases: 3.4% and 3.6% repectively. But
of the remainder, those where both algorithms report an error bound to the user, Algorithm 2 fails
to get strong convergence in both Enorm and Bnorm in only 0.16% of the cases (1800 out of 1138444
cases), whereas Algorithm W fails to get strong convergence in both Enorm and Bnorm over 27 times
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(in both Enorm and Bnorm) and cases with no convergence (Bnorm >

√
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Left: Algorithm 2 with ρthresh = 0.5. Right: Algorithm W.

as often, in 4.3% of the cases (48802 out of 1136482). In other words, there are over 27 times more
cases where Algorithm W is “confused” than Algorithm 2 (48802 versus 1800), and may return
significantly disagreeing Enorm and Bnorm.

Finally, Figure 4 shows the 2D histogram of the ratio Bnorm/Enorm plotted against κnorm. These
plots show how much Bnorm overestimates Enorm (ratio > 1) or underestimates Enorm (ratio < 1).
We omit cases where Bnorm does not converge, and also cases where both Enorm and Bnorm converged
strongly (the ideal case), since we are only interested in analyzing in cases where the algorithm
claims to converge to a solution but either Enorm or Bnorm or both are much larger than εw.
Since Algorithms 2 and W converge strongly for both Enorm and Bnorm for all “well”-conditioned
cases, no data points appear left of the vertical line in the left or right of Figure 4. We are most
concerned about underestimates, where the error bound is substantially smaller than the true
error. We see that Algorithm 2 has somewhat fewer underestimates than Algorithm W (defined as
Enorm > 10Bnorm), 7 vs. 243, and rather fewer overestimates (10Enorm < Bnorm), 25 vs. 2130.

Analogous figures for Algorithm L (see [7, Figs. 6c and 8c]) indicate that while Algorithm L
never underestimates the error, it almost always overestimates the error by two or three orders of
magnitude. Thus the error bound returned by Algorithm L is loose, albeit safe.

6.2 Componentwise Error Estimate

Algorithm W does not compute a componentwise error bound, nor was it designed to make Ecomp

small, so only its true error Ecomp is analyzed in this section.
The most important observation is that Algorithm 2 delivers a tiny componentwise error (Ecomp

strongly converged) and a slightly larger error bound (Bcomp also strongly converged) as long as
κcomp < 1/γεw, i.e. for all componentwise “well”-conditioned matrices (545427 out of 2 million
cases). This is the best possible behavior we could expect.

The second important observation is that for harder problems, where κcomp ≥ 1/γεw, Algorithm 2
also does well, getting strong convergence in both Ecomp and Bcomp in 94% of the cases.
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Figure 5: Componentwise error vs. κcomp. Left: Algorithm 2 with ρthresh = 0.5. Right: Algorithm W.

In the rest of this section, we explore the experimental data in more detail, describing what
goes wrong when we fail to get strong convergence.

The two plots in Figure 5 show the 2D histograms of the test problems plotted according to
their componentwise error Ecomp and condition number κcomp for the Algorithms 2 and W. These
graphs may be interpreted similarly to those in Figure 2, which were described in the last section.

As already observed, Figure 5 shows that for “well”-conditioned problems Algorithm 2 attains
strong convergence of Ecomp in all cases. Algorithm W, which was not designed to get small
componentwise errors, does slightly worse, with strong convergence in 99% of the cases (539342
out of 545427), and weak or no convergence in the other 1%, including a few truly well-conditioned
problems.

The second important conclusion is that for harder problems, with κcomp ≥ 1/γεw (1454573
cases) Algorithm 2 still does very well, exhibiting strong convergence of Ecomp in 95% of cases
(1380569 out of 1454573). Algorithm W does much worse, exhibiting strong convergence of Ecomp

in only 66.6% of cases (968198 out of 1454573), and failing to converge at all more than twice as
frequently (104108 versus 41755).

In contrast, with Algorithm L the error grows roughly proportional to the condition number,
(see [7, Fig. 9c]). Strong convergence of Ecomp is very rare, only 7.3% of “well”-conditioned cases,
and not at all for ill-conditioned cases.

As in the last section, we note that a small error Ecomp is helpful only if the algorithm also
produces a comparably small error bound Bcomp. Consider Figure 6, whose interpretation is the
same as that of Figure 3 in the last section.

First consider the left-hand plot in Figure 6.2. All 545427 “well”-conditioned problems appear
in the dark line at the bottom left of the plot; with Bcomp = γεw and Ecomp slightly smaller,
usually around εw. Thus we can trust Algorithm 2 to deliver a tiny error and a slightly larger
error bound as long as κcomp < 1/γεw. By subtracting out these 545427 “well”-conditioned cases,
we get the distribution of results (Ecomp, Bcomp) for all ill-conditioned cases. Most still yield strong
convergence in both quantities (94%).

Finally, the right-hand plot in Figure 6.2 shows the 2D histogram of the ratio Bcomp/Ecomp plotted
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Figure 6: Componentwise error vs. bound for Algorithm 2. Left: Bcomp vs Ecomp for all 2M cases. Right:
Ratio (Bcomp/Ecomp) vs. κcomp, Algorithm 2 with ρthresh = 0.5. Cases with strong convergence (in both Ecomp

and Bcomp) and cases with no convergence (Bcomp >
√

εw) are omitted for clarity.

against κcomp. This graph is similar in interpretation to Figure 4. In contrast Figure 4, we see
there are more cases where Algorithm 2 attains neither strong convergence in both true error and
error bound, nor convergence failure in both: 45100 cases versus 1800 (both out of 2 million, so
rather few either way). Considering underestimates of the error, we see that there are also more
cases where the ratio is less than 0.1, 273 vs. 7.

6.3 Iteration Counts

Table 1 shows statistics on the number of iterations required by the algorithms; in other words, the
number of iterations was not limited (ithresh =∞), and we allowed the algorithms to run until the
other stopping criteria were satisfied. The data is broken down into “well”-conditioned problems
versus ill-conditioned problems, and by the number of iterations where the solution x is represented
in working (single) precision versus doubled precision. The behavior of Algorithm 2 for different
values of ρthresh is also shown, and will be discussed later.

For “well”-conditioned problems, both Algorithms 2 (for any value of ρthresh) and W required
most 4 iterations and 2.1 iterations on average. Doubled-x iteration was triggered in 55% of cases.
On averge 2/3 of the iterations are in single-x and 1/3 in the more expensive doubled-x. Algorithm L
is limited to at most 6 iterations in all cases.

For ill-conditioned problems, the median number of iterations used by Algorithm 2 with ρthresh =
.5 rises to 4, which is still quite modest, but in the worst case we do 33 iterations. Doubled-x
iteration is always triggered, right after the first iteration.

6.4 Effects of various parameters in Algorithm 2

Compared to Algorithm W, Algorithm 2 incorporates several new algorithmic ingredients and
adjustable parameters. We note that different parameter settings in Algorithm 2 usually do not
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single x doubled x total doubled-x
max mean med max mean med max mean med incidence

Alg. 2 (any ρthresh) 3 1.5 1 3 0.7 1 4 2.1 2 55%
Alg. W (Wilkinson) 4 2.1 2
Alg. L (LAPACK) 4 2.6 3

(a) “Well”-conditioned (κcomp ≤ 1/γεw)

single x doubled x total doubled-x
max mean med max mean med max mean med incidence

Alg. 2 (ρthresh = 0.5) 1 1 1 32 3.6 3 33 4.6 4 100%
Alg. 2 (ρthresh = 0.8) 1 1 1 89 4.0 3 90 5.0 4 100%
Alg. 2 (ρthresh = 0.9) 1 1 1 175 4.1 3 176 5.1 4 100%
Alg. 2 (ρthresh = 0.95) 1 1 1 330 4.3 3 331 5.3 4 100%
Alg. W (Wilkinson) 29 4.0 3
Alg. L (LAPACK) 6 2.4 2

(b) Ill-conditioned (κcomp > 1/γεw)

Table 1: Statistics (max, mean, and median) on the number of iterations required by each algorithm.
Algorithms W and L do not use doubled-x scheme so only totals are given.

make any difference for the well-conditioned problems, since all of them quickly converge strongly.
However they can make noticeable differences for the very ill-conditioned problems. In this section,
we examine the effect of each individual parameter setting, using these difficult problems.

6.4.1 Effect of doubled-x iteration

For ill-scaled systems, the doubled-x iteration is very useful in order to get accurate results for the
small components in the solution. To measure its benefit we ran Algorithm 2 with and without
the doubled-x iteration for the two million test cases. See [7, Fig. 13] for 2D histograms of Enorm

versus Bnorm and Ecomp versus compbnd with and without doubled-x iteration.
To summarize, with doubled-x iteration, Algorithm 2 obtains 57863 (2.9%) more cases of strong-

strong normwise convergence as well as 256030 (12.8%) more cases of strong-strong componentwise
convergence. The number of cases where the code reports normwise non-convergence (Bnorm >√

εw) decreases by 179; cases of componentwise non-convergence (Bcomp >
√

εw) decreases by
5581. Doubled-x iteration decreases the worst normwise underestimation ratio from 1010 to 230,
and the worst componentwise underestimation ratio from 6300 to 320.

6.4.2 Effect of ρthresh

In Algorithm 2, ρthresh is used in Criterion 2 to determine when to stop the iteration. A larger ρthresh

allows the algorithm to make progress more slowly and take more steps to converge, which is useful
for very ill-conditioned problems. However, a larger ρthresh may cause more severe overestimates
(because of the (1−ρthresh) factor in the denominator of the error bound) and underestimates (since
we are being more aggressive to pursue a small dx).

Table 1 displays the statistics of the total iteration counts for various algorithms. For well-
conditioned problems, Algorithm 2 (with various ρthresh) and Algorithm W all require about the
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Underestimates Overestimates No convergence
> 100× > 10× > 100× > 10×

Alg. 2 with ρthresh = 0.5 0 7 1 25 40459

Alg. 2 with ρthresh = 0.8 0 30 3 151 25452

Alg. 2 with ρthresh = 0.9 0 34 3 505 22755

Alg. 2 with ρthresh = 0.95 0 33 14 843 21673

Alg. W (Wilkinson) 6 243 35 2130 42421

Alg. L (LAPACK) 0 0 56494 57262 1942738
(a) Normwise

Underestimates Overestimates No convergence
> 100× > 10× > 100× > 10×

Alg. 2 with ρthresh = 0.5 2 273 13 1627 41939

Alg. 2 with ρthresh = 0.8 5 463 36 3842 26847

Alg. 2 with ρthresh = 0.9 6 502 67 7436 24250

Alg. 2 with ρthresh = 0.95 8 499 140 11094 23297
(b) Componentwise

Table 2: Number of overestimates and underestimates of the error returned by various algorithms. Cases
with strong convergence in both true error and error bound are not included in the underestimates and
overestimates. The number of cases with no convergence is also listed. The category “> 10×” includes the
cases under “> 100×”.

same number of steps (maximum of 4 with median of 2). For ill-conditioned problems, Algorithm W
requires slightly fewer iterations than Algorithm 2 (at the cost of not converging in some cases).
For Algorithm 2 it is clear that a larger ρthresh may potentially need a much larger number of
iterations. However, a large number of iterations is required only when the problem is extremely
hard and happens relatively rarely (hence the median stays at 4).

Table 2 gives the number of overestimates and underestimates of the error bounds returned by
Algorithm 2, as a function of ρthresh: The number of unconverged cases drops nearly in half as
ρthresh increases from 0.5 to 0.95, at the cost of more severe overestimates and underestimates.

6.5 “Cautious” versus “aggressive” parameter settings

To summarize, by setting ρthresh and ithresh smaller or larger, Algorithm 2 can be made “cautious”
or “aggressive”. For the cautious setting we choose ρthresh = .5 and ithresh = 10. For the aggressive
setting we choose ρthresh = .9 and ithresh = 100. The cautious parameter setting works reliably
on all “well”-conditioned problems and so we use it as the default setting in the algorithm. The
cautious setting also works for a large fraction of the most ill-conditioned problems, achieving strong
normwise convergence in 96.4% of cases and strong componentwise convergence in 94.0% of cases.
Failure to converge is indicated by returning Bnorm = 1 and/or Bcomp = 1, meaning no accuracy
is guaranteed. We expect that most users would prefer this cautious mode as the default. On the
other hand, the aggressive parameter setting could be used for very ill-conditioned problems, at
the slightly higher risk of long convergence, or extreme over/underestimates of error.
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6.6 Limitations of Refinement and our Bounds

In [7, Sec. 7] we explore selected ill-conditioned examples in detail to see how Algorithm 2 behaves
when it severely overestimates or underestimates the true error. Briefly, underestimates occur when
the algorithm believes it has converged, but to a slightly wrong answer, and overestimates occur
either because of early termination or a true error being “accidentally” much smaller than ‖dx‖
would indicate.

We also tried certain specially constructed difficult problems, besides the ones described in
Section 5. When faced with Rump’s outrageously ill-conditioned matrices [19] and random x, our
algorithm either successfully solved the systems (O(εw) errors and bounds) or correctly reported
failure to converge. We also tried exactly singular matrices with slightly inconsistent right-and-
sides, but where LU factorization still succeeded because of roundoff. Algorithm 2 computed error
bounds that were fairly close to 1, i.e. exceeded our reliability threshold of

√
εw by a large margin,

and so correcly indicated that the results were unreliable. We also tried problems with exactly
zero solution components; when these were a result of A−1 and b having appropriate zero structure,
these zero components were computed exactly with zero error bounds. Otherwise, the code correctly
decided not to return a componentwise error bound.

7 Conclusions and Future Work

We have presented a new variation on the extra precise iterative refinement algorithm for the
solution of linear equations. With negligible extra work we can return a bound on the maximum
relative error in any solution component, as well as the normwise error bound. We prove this
by means of an error analysis exploiting column scaling invariance of the algorithm. With the
availability of the extended precision BLAS standard, the algorithm can be implemented portably.
Based on a large number of numerical experiments we show that the algorithm converges quickly
for all but the worst conditioned problems and that the corresponding error bounds (normwise or
componentwise) are completely reliable, (i.e. when the corresponding computed condition number
is less than 1/γεw). The algorithm also converges for a large fraction of the extremely ill-conditioned
problems although the error bounds occasionally underestimate the true error. Some difficulties
with the badly scaled problems (i.e. with greatly varying solution components) can be overcome
by using extra precision for the updated x (the so-called double-x iteration).

Systems like MATLAB [17] that solve Ax = b return a warning when A is nearly singular, based
on a condition estimator. This estimator, like Algorithm 2, costs very little beyond the triangular
factorization for medium to large n. Therefore, these systems could use iterative refinement as a
default, issuing a warning only if the system is not guaranteed to be fully accurate, because κnorm

(or κcomp) is too large.
Our algorithm applies to all the other LAPACK [1] and ScaLAPACK [4] linear system solvers.

Additional structure in symmetric and banded systems may allow better error estimates or earlier
termination. Section 2’s error analysis needs to be extended to these systems. Algorithm 2 also
applies to our parallel sparse direct solver SuperLU DIST [16], where static pivoting instead of
partial pivoting is used for numerical stability.

The majority of computers contain processors with Intel’s IA32 architecture [13], and support
80-bit floating-point arithmetic in hardware. Future work will extend Algorithm 2 and its error
analysis to use this kind of extended precision.
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Extra-precise iterative refinment may also be applied to least squares problems, eigenvalue
problems, and any other method of numerical linear algebra. Ultimately, the goal should be to
achieve a guaranteed tiny error for all algorithms in LAPACK as long as an appropriate condition
number is sufficiently less than 1/εw, and to to this for a small cost beyond the most straightforward
solution (eg O(n2) extra on top of O(n3)). This will not necessarily be possible in all cases (eg
small extra cost for narrow band problems) but this level of accuracy should be made available for
the standard problems of numerical linear algebra.
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